Tutorial Optimization

```
Tutorial 1 Sheet 1 (Reminders) exercises 4.3,4.4,4.5.4.6, 4.7, 4.8
Tutorial 2 Sheet 1 (Reminders) exercises 5.4,5.5, 6.3,6.4,2.1,2.8
Tutorial 3 Sheet 1 (Reminders) exercises 2.9,2.10,2.11, 1.1,1.2,1.6
Tutorial 4 Lecture notes: exercise 1.1,1.2,1.3,1.4
Tutorial 5 Lecture notes: exercise 1.5, 1.6., 1.7,1.8
Tutorial 6 Lecture notes: exercise 2.1,2.2,2.3,2.4
Tutorial 7 Lecture notes: exercise 2.5,2.6,2.7,2.8, 2.9
Tutorial 8 Lecture notes: exercise 2.10, 2.11,2.12,2.13,2.14
Tutorial 9 Lecture notes: exercise 3.1,3.2,3.3,3.4,3.5,3.6
Tutorial 10 Lecture notes: exercise 3.7,3.8,3.9,3.10
Tutorial 11 Lecture notes: exercise 3.10,3.11,3.12,3.14,3.15
Tutorial 12 Lecture notes: exercise 3.16,3.17,3.18,3.19,3.20
Tutorial 13 Lecture notes: exercise 4.1,4.2,4.3,4.4,4.5
Tutorial 14 Lecture notes: exercise 4.6,4.7,4.8,4.9
Tutorial 15 Lecture notes: exercise 4.10, 4.14, 4.15, 4.16, 4.17
Tutorial 16 Lecture notes: exercise 4.19,4.20, 4.27, 4.30, 4.31
```

Tutorial 17

Exercise 1

Prove, using Borel-Lebesgue definition of Compactness, that [0, 1] is compact.

Exercise 2

let E be the space of real sequences (u_n) such that $|u_n| \le 1$ for every n. For every $u \in E$, let $||u|| = \max\{|u_n| n \ge 0\}$. Prove that there exists a sequence (u(k)) of elements of E without any convergent subsequence in (E, ||.||), i.e. (E, ||.||) is not compact.

Exercise 3 Let E be the space of real sequences (u_n) . Consider the distance, on E, $d(u,v) = \sum_{n>0} \frac{\min\{1,|u_n-v_n|\}}{2^n}$.

- a) Prove d is well defined, and is a distance.
- b) Prove that a sequence (u(k)) of elements of E converges to $u \in E$, where E is endowed with d, if and only if the real sequence $(u_n(k))_{k \in \mathbb{N}}$ converges to u_n for every integer n.
 - c) Prove that E endowed with d is compact.

Exercise 4 In the book "Introduction to dynamic optimization" (de La fuente): problem 7.17 P 88, problem 8.17 page 97, problem 8.18 page 97.

Tutorial 18

Exercise 1 Prove that in a normed space, the unit ball is compact if and only if the dimension is finite.

Exercise 2 Consider the following optimization problem, for $x_0 \geq 0$ given:

$$\max_{\forall n \ge 1, 0 \le x_t \le f(x_{t-1})} \sum_{n > 1} \beta^n u(f(x_{t-1}) - x_t)$$

Here, $x_t \in \mathbf{R}$ is the capital at date t, $f(x_t) \in \mathbf{R}$ the production at date t+1, $f(x_{t-1})-x_t$ the consumption at date t, u a utility function, β a discount factor

Assume f continuous and bounded from $\mathbf{R}+$ to $\mathbf{R}+$, u continuous and bounded from \mathbf{R} to \mathbf{R}_+ , $\beta \in]0,1[$.

Consider E the set of real sequences $(x_t)_{t\geq 1}$ endowed with the metric $d(x,y) = \sum_{n\geq 1} \frac{\min\{1,|x_n-y_n|\}}{2^n}$.

- 1) Prove that the objective function is continuous.
- 2) Prove that the set of constraints is closed and bounded. Prove that it is compact.
 - 3) Prove that the previous optimization problem has at least a solution.

Tutorial 19

Exercise 1

Let $\alpha \in]0,1[$. For every subset $E \subset \mathbf{R}$ which is not bounded above, we adopt the following convention: $\sup E = +\infty$. For every mapping $f : [0,\infty[\to \mathbf{R}]$, one defines the real ||f|| by $||f|| := \sup\{|e^{-2\alpha t}f(t)| : t \in [0,\infty[\}]$.

Let \mathcal{V} the set of continuous functions $f:[0,\infty[\to \mathbf{R} \text{ such htat } ||f|| \text{ is finite } (\text{which means } ||f|| \neq \infty.)$

- 1) Prove that the restriction of the function f(t) = t to the set $[0, +\infty[$ is in \mathcal{V} .
 - 2) Prove that $(\mathcal{V}, \|.\|)$ is a normed vector space.
 - 3) Let (f_n) a Cauchy sequence of $(\mathcal{V}, \|.\|)$.
 - a) Prove that for every $t \in [0, +\infty[$, $(f_n(t))$ is a Cauchy sequence.
 - b) Prove that $(\mathcal{V}, \|.\|)$ is a Banach space.

Let $F : \mathbf{R} \to \mathbf{R}$ a mapping α -Lipschitzienne, which means that for every $(t, u) \in \mathbf{R} \times \mathbf{R}$, one has $|F(t) - F(u)| \le \alpha$. |t - u|. For every $f \in \mathcal{V}$, one defined $T(f) : [0, \infty[\to \mathbf{R}]$ by

$$\forall t \in [0, \infty[: T(f)(t) = y_0 + \int_0^t F(f(s)) ds.$$

- 5) Prove that $T(0) \in \mathcal{V}$, where 0 is the null function.
- 6) Prove that $\forall f, g \in \mathcal{V}, \forall t \in [0, \infty[$, one has $|T(f)(t) T(g)(t)| \leq \frac{e^{2\alpha t}}{2} ||f g||$.
 - 7) Deduce that $\forall f \in \mathcal{V}$, one has $T(f) \in \mathcal{V}$.
- 8) Prove that there exists a constant $\beta \in]0,1[$ such that for every $(f,g) \in \mathcal{V} \times \mathcal{V}$, one has $||T(f) T(g)|| \leq \beta . ||f g||$.
 - 9) Prove that there exist a unique $f \in \mathcal{V}$ such that T(f) = f.

Exercise 2 Let (E, d) a complete metric space and Λ a metric space. Consider a mapping $f: E \times \Lambda \to E$ such that:

- For every $x \in E$, the mapping from $\Lambda \to E, \, \lambda \mapsto f(x,\lambda)$ is continuous;
- $\exists k < 1$ such that $d(f(x,\lambda), f(y,\lambda)) \leq kd(x,y)$ for every $(\lambda, x, y) \in \Lambda \times E \times E$.
- 1 Prove that for every $\lambda \in \Lambda$, there exists a unique $a_{\lambda} \in E$ such that $f(a_{\lambda}, \lambda) = a_{\lambda}$.
 - 2 Prove that the mapping $\lambda \mapsto a_{\lambda}$ is continuous.

Exercise 3 Let (X, d) a compact and nonempty metric space. A mapping f from X to X is if d(f(x), f(y)) < d(x, y) for every $(x, y) \in X \times X$ such that $x \neq y$.

1 - Prove that a weakly contracting mapping has a unique fixed point (i.e. the equation f(x) = x has a unique solution).

2 - Prove that it is false if $X = \mathbf{R}$.

Tutorial 20

Exercice 1

Let X and Y two metric spaces, and $f: X \to Y$ a continuous mapping. Prove that F from X to Y defined by

$$\forall x \in X, F(x) = \{f(x)\}\$$

is l.s.c. and u.s.c.

Exercice 2

Let X and Y two metric spaces, and for every i = 1, ..., n let $f_i : X \to Y$ continuous mappings. Let F multivalued from X to Y defined by

$$\forall x \in X, F(x) = co\{f_i(x), i = 1, ..., n\}.$$

Prove it is l.s.c. and u.s.c.

Exercice 3

To every $p = (p_1, p_2) \in \mathbf{R}^2_+$, we associated

$$\Phi(p) = \{(x_1, x_2) \in \mathbf{R}^2, p_1.x_1 + p_2.x_2 \le 0\}.$$

Is Φ l.s.c., u.s.c. ?

Exercice 4

Let Φ be a multivalued mapping from X to Y, two metric spaces. Assume Φ l.s.c.

- a) Prove that $\overline{\Phi}$ is lower semi-continuous.
- b) Assume Y normed space. Prove that $x \to co\Phi(x)$ is lower semi-continuous.

Exercice 5

Let Φ be a multivalued mapping from X to Y, two metric spaces. The space X is assumed to be compact, and Φ u.c.s., with compact values. Prove that $\Phi(X) = \bigcup_{x \in X} \Phi(x)$ is compact.

Tutorial 21

Exercice 1 Let X and Y two metric spaces, F a multivalued function from X to Y with compact, non empty values. Let f a continuous function from

 $X \times Y$ to **R** Let $g(x) = \max_{y \in F(x)} f(x, y)$ and $M(x) = \{y \in F(x) : f(x, y) = g(x)\}$. Prove that g is continuous and M is u.s.c. with nonempty values.

Exercice 2 Prove Blackwell theorem.

Exercice 3 Let K a compact metric space. Let f a continuous function from $\mathbf{R}^d \times K$ to \mathbf{R} Let $v(x) = \max_{y \in K} f(x, y)$. Assume that for every $x \in \mathbf{R}^d$, there exists a unique y(x) such that v(x) = f(x, y(x)). Assume that for every $y \in K$, f(., y) is differentiable and $\nabla_x f$ is continuous with respect to (x, y). Prove that v is of class C^1 and that $\nabla v(x) := \nabla_x f(x, y(x))$ for every x.

Tutorial 22

In the book "Introduction to dynamic optimization" (de La fuente): problem 8.26 P 100, proof of Theorem 1.1 p 551, problem 1.2 P 552., theorem 1.5 page 561 proof of Theorem 1.6 p 563.

Tutorial 23

In the book "Introduction to dynamic optimization" (de La fuente): problem 1.7 P 563.,problem 1.11 page 564, Theorem 1.12 page 564, problem 1.14 page 564, problem 1.17 page 564

Tutorial 24

Free tutorial for questions, explanations, ...